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Abstract. The coherence of blackbody radiation between two parallel (distance L apart), 
infinitely extended and perfectly conducting plates is studied. The finite size of the 
geometric arrangement leads to spatially dependent coherence properties which are 
compared with the spatially averaged properties. 

1. Introduction 

It is well known that blackbody radiation can be characterised by the degree of greatest 
possible incoherence compared with other radiation sources. This statement requires 
that the thermal radiation is not influenced by boundary conditions. Nevertheless, the 
infinite-space blackbody radiation reveals ranges of space and time in which the 
coherence is different from zero. The fundamental studies in this field were made by 
Bourett (1960), Sarfatt (1963) and Mehta and Wolf (1964a, b, 1967). 

The standard quantity for the description of radiation fields is the complex degree of 
coherence. The quantity can be measured directly by interference experiments 
(Mandel and Wolf 1965). It is expressed in terms of the normal ordered correlations as 
follows: 

8 , ( r ,  t )  denotes one component of the space- and time-dependent operator of the 
electric field. The - and + signs denote the negative- and positive-frequency parts of 
the operators (Glauber 1963); ( ) denotes the thermal ensemble average at tempera- 
ture T. The modulus as well as the phase of yii is directly related to the observed 
interference pattern created,.for example, by a double-slit set-up. The modulus of y 
measures the contrast, while the phase of y specifies the maxima of the interference 
pattern (Mandel and Wolf 1965). 

Recently, the temporal coherence properties of the blackbody radiation in restric- 
ted geometries were analysed and compared with those of radiation in isotropic infinite 
space (Steinle er a1 1975, Baltes et a1 1976, Eckhardt 1978a). In these papers the 
comparison was always made between volume-averaged quantities, and therefore only 
a global description of the temporal coherence was possible. 

Here, the main interest is focused on the spatial dependence of the coherence in the 
slab resonator: temporal and spatial coherence will depend on the positions at which the 
field is considered. 
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2. Position-dependent temporal correlation functions 

We consider the electromagnetic equilibrium fluctuations between two infinitely 
extended and perfectly conducting plates separated by a distance L. The x direction is 
chosen perpendicular to the plates so that the plates are described by the equations 
x = 0 and x = L. The complete correlation tensors of the system in a representation 
which may be interpreted as an expansion around a two-dimensional radiation field and 
which is suited for numerical discussion were given in a preceding paper (Eckhardt 
1978b, equations (6.12H6.39); hereinafter we will refer to this work as I). 

Let r2 be the component of r in the yz plane, and EiN) (r,  r ‘ ,  r )  = (& (r, 7)s; (r’ ,  0)) 
and HjN) (r, r’, T )  = (A; (r, T)A+ (r’ ,  0)) be the diagonal elements of the electric and 
magnetic correlation tensors respectively. Then we may write 

In the following we put r2 = r ; .  Using the abbreviations 

CY = h r c / k ~ T L ,  

K = 2L4/T3Ch, 

p = r k ~ T / h  (thermodynamic reduced time), 

5 = m / L ,  

5’ = TX‘IL, 

we obtain from I 

KLY E,, ( x ,  x ’ ,  7 )  
3 ( N )  

KCY3HLy)  (X, X’, 7 )  

K L Y ~ H ; ~ )  ( x ,  XI, r )  
3 ( N )  

= KCY H , ,  ( x ,  x ’ ,  r )  

m m 3  na)’-’ 
= 2[(3, 1 -ip) + 2  1 1 2 e-na‘p-iw)( [2 cos n( cos ne’]. 

p = l  n = l  j = 1  (P-iCL)j 
(2.9) 

In (2.6) and (2.9) 5 denotes the generalised Riemann zeta function which is defined by 
the series 
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In the limit a + 00 only the first terms in (2.6) and (2.9) are left. They represent the 
isotropic two-dimensional radiation field: the wavevectors of all excited modes lie in the 
yz plane. 

Owing to the rapid convergence of the series in (2.6H2.9) these formulae are most 
suitable for numerical discussions. If we put 5 = 5’ in (2.6H2.9) and perform the 
integration over x we obtain the known results (Eckhardt 1978a, equations (21)-(24)). 
The integration corresponds to the replacement of the square brackets in (2.6H2.9) by 
1 .  

To make contact with the results of Baltes et a1 (1976) we will also calculate the x- 
and x‘-dependent correlations in the cy + 0 representation. To do this we will follow the 
procedure described in I (§ 6.2). We find 

(2.10) 

(2.11) 

(2.13) 

In (2.10)-(2.13) we have defined the quantities 

The p = 0 terms in (2.10)-(2.13) represent the well-known correlations in the half- 
space (Agarwal 1975, Fox-Keller 1965); K ( Y ~  and [ /a  are independent of L (only 
thermodynamic reduced quantities are involved), there is only one reflection at x = 0 
for the i =  1 ,3  terms, and no reflection at all for the i = 2 , 4  terms. *p may be 
interpreted as the number of reflections at the wall x = L. A general mathematical 
concept of the multiple-reflection expansions used to calculate the density of states in 
finite systems was developed by Balian and Bloch (1970a, b, 1972); see also Balian and 
Duplantier (1977), Lukosz (1971) and Brown and Maclay (1969). If we put x = x’  and 
integrate over x the p = 0, i = 2 , 4  terms yield 5(4, 1 -ip), i.e. the correlation functions of 
the infinite isotropic space. Considering the relation 

in the terms i = 1 , 3 ,  and expressing the i = 2 , 4  terms (p f 0) by generalised 5 functions, 
we obtain the results of Baltes et a1 (1976). 

Owing to the relatively slow convergence of the series (2.10)-(2.13) the a + O  
representation is not suited for a discussion of the coherence properties for arbitrary 
values of a and p. 
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If we add up the traces of the electric and magnetic correlation tensors (x = x ' )  the x 
dependence vanishes, i.e. the spectral and total energy density in the slab as well as in 
the half-space are r-independent (Eckhardt 1978a, b). 

3. Position-dependent temporal coherence 

In this section we restrict ourselves to the discussion of the spatially dependent 
coherence properties of the electric autocorrelation functions. Analogous considera- 
tions can be made for the magnetic fields. The temporal x-dependent coherence 
properties are determined by the modulus lyii(x, T ) I  and the phase q$i(x, T) = 
tan-'(Im E : ~ ) ( X ,  T)/Re E : ~ ) ( X ,  7)) of the complex degree of coherence. Splitting up 
the correlations (2.6)-(2.9) into real and imaginary parts we can perform the summation 
over n (Eckhardt 1978a, b). The resultant formulae are basic for our numerical 
discussions. 

For large a (a 2 8), yxx shows the coherence properties of a two-dimensional 
radiation field, while yyy reveals a damped one-mode behaviour. In this regime both 
radiation fields are independent of x, and therefore we find no differences compared 
with the volume-averaged quantities. 

With decreasing a, modes which have non-vanishing x components of the wave- 
vector ( k ,  = nw/L = 1 , 2 , 3 ,  . . . ) successively contribute to yxx. In yyy,  damped 
eigenmodes with k, = m / L ,  n Z= 2 become important. Consequently, both radiation 
fields are x-dependent. 

In figures 1 and 2 we have plotted the modulus of yyy as a function of p for different 
values of x ,  for a = 4 and a = 2 respectively. With the exception of pa -- 27rn the curves 
for x/L < f lie below and the curves for x/L > f lie above the averaged curve. The 
x/L = f curve is nearly identical with the averaged one. The lowest ( x / L  = 0) and 
highest (x/L = $) curves are displayed in the figures. We note that the x dependence 
nearly disappears for @a = 27rn (this is more true for a = 4 than for a = 2)  and is 
strongly marked between these values. 

Figure 1. Modulus of the temporal coherence function for the infinite slab resonator, 
component parallel to the plates, jyyyl for (I = 4, i.e. LT = 0.18 cm K, against the ther- 
modynamic reduced time p = ~ k e T / f i  for x = 0 (broken curve) and x = L/2  (full curve). The 
volume-averaged case (dotted curve) is shown for comparison. 
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Figure 2. As in figure 1 with a = 2, i.e. LT = 0.36 cm K. 

For a = 4 the phase of yyy is nearly independent of x .  In figure 3 we see that for cy = 2 
and for different values of x the phase of yyy oscillates around the averaged curve. The 
limit curves are also given by x / L  = 0 and x / L  = t ,  and the x / L  = f curve is indis- 
tinguishable from the averaged curve. For cvp = r n  the x dependence disappears. 

These characteristic features can be extracted from the (Y + 03 representation if in yyy 
all terms proportional to e-"= are neglected for n 3 2 (i.e. in (2.7) only the terms n = 1, 

Figure 3. Phase angle dYy = arg yyy of the temporal coherence function parallel to the plates 
for Q = 2 as a function of = ~ k g T / f i  for x = 0 (broken curve) and x = L/Z (full curve). The 
volume-averaged case (dotted curve) is shown for comparison. 



1568 W Eckhardt 

p = 1, n = 2, p = 1 and n = 1, p = 2 are taken into consideration). In this approximation 
we obtain 

lyyyl=(l+p2)- ' /2[  l+e~" (4 (cospa -1 )4cos2  5+ 

" 1  1 [( 4+N 
2 l+e - "  4s inpa4cos  5 - 7  sin pa + p cos pa 

cos pa - p sin pa 
tan +yy = 

1 - p 2  1 CL x - - sin 2 p a  + 7 cos 2pa)  -'I 1. 
(1 + p 2  2 l+CL 

(3.2) 

Replacing 4 cos2 5 by 1 in (3.1) and (3.2) we obtain the corresponding expressions for 
the volume-averaged quantities lyyyl and bYy, and if 4 cos2 5 = 1, i.e. x = L/3, these 
expressions are equal. The factor in front of cos2 5 vanishes in (3.1) if ap = 27rn and in 
(3.2) if ap = m. Between these nodes, which represent the local maxima (cos ap - 1 = 
0), the curve is modulated by the factor 4 cos2 5 compared with the averaged behaviour. 

Therefore equations (3.1) and (3.2) describe the coherence properties well for 
a =4 .  Terms proportional to l /a compared with 1 were neglected and hence the 
description (3.1) and (3.2) cannot be as good for a = 2. 

In figures 4 and 5 we have plotted the modulus and phase of yyy for a = 0.5. In the 
higher-temperature regime (a = 0.5 3 LT = 1.44 cm K) many terms in (2.7) have to be 
considered, and the two-mode approximation is totally unsuitable. 

For small a(a C 1) maxima are found in lyyyl for ap = 27rp, i.e. for TC = 2Lp, 
p = 1,2 ,3 ,  . . . (Baltes et a1 1976, Eckhardt 1978a). 

In addition there are maxima in lyyyl for arbitrary values of x if TC = 2(x * Lp), 
p = 0, 1,2,  . . . , i.e. maxima are found for time differences T necessary to form closed 
trajectories with respect to the point x after p reflections at the wall x = L. (The 
maximum in figure 4 corresponds to CT = 2x.) Owing to the damping the maxima 
disappear with increasing p. 

With the exception of these additional maxima the volume-averaged curves are 
identical with the x-dependent ones if x/L is not too small. 

Figure 4. Modulus of the temporal coherence function for the infinite slab resonator, 
component parallel to the plates, lyyvl for a = 0.5, i.e. LT= 0.72 cm K, as a function of 
cc = rkBT/h for x = 0 (broken curve), x = L/4 (dotted curve) and x = L / 2  (full curve). 
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Figure 5. Phase angle brY = arg yyv of the temporal coherence function parallel to the plates 
for a = 0.5 as a function of p = TkgT/h  for x = 0, L/4 and L / 2 .  The volume-averaged case 
(dotted curve) is shown for comparison. 

In figure 5 we see that the phases show complete cycles even for 7c < 2L: there are 
already closed trajectories for TC = 2x. 

Considering equation (2.11) we can understand these characteristic features quali- 
tatively. The denominator of the real and imaginary part of (2.11) will be minimal if 
p = i.e. after the time necessary to return from x to x' after * p  reflections at x = L. 
For x = x '  the above interpretation applies. 

In the a >> 1 approximation for yxx we take into account two parts: the two- 
dimensional radiation field, and the lowest mode with non-vanishing component of the 
wavevector perpendicular to the plates. We find 

Re l ( 3 , l -  ip)) sin pa 
1 - p 2  2cL 

(1 +CL2l2 
+ 

- 1 ~ ( 3 , 1  - i c ~ ) i ~ ] ~  e-u cos2 5) 
l(3) 

Re 5(3,1- ip) 

, 

tan & = Im 5(3,1 -ip) ( 1 + ( 1 + p y  

cos pa 
2cL 1-/2 

[(Im l(3, 1 - ip) -Re  5(3, I-iM) 

(3.3) 

2p ) sin pa12 cos2 la e-u (3.4) 
1-p2 + 

+(Im((3, l-ip) R e l ( 3 , l - i p )  

Replacing 2 cos2 5 by 1 in (3.3) and (3.4) we obtain the corresponding expressions of the 
averaged quantities, and for x = L/4  both approximations are equal. 
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If a@ = 27rn in (3 .3)  and if n = 7rn in (3 .4) ,  the factor in front of a e-a 2 cos’ 6 
becomes so small that the x dependence nearly vanishes. Between these values the 
curves for x < L / 4  lie below and the curves for x > L / 4  lie above the averaged ones. We 
find the same qualitative deviations from the averaged properties as we found for yyy. 
Furthermore we may conclude from (2.10) that the qualitative features of yyv in the 
a < 1 regime are also valid for yxx. We have not shown the yxx curves as the graphs are 
less instructive owing to the stronger damping in yxx.  

4. Spatial correlation functions 

To complete the description of the electromagnetic fluctuations in the slab, we study the 
spatial coherence (7 = 0). We restrict ourselves to the discussion of the diagonal 
elements of the electric correlation tensor which determines the optical properties. We 
define the temperature-scaled distance vector in the yr plane 

R =  (Ry, R,)= (kBT/fic)(y-y‘, z -z‘), IRI = R ,  (4.1)  

the length-scaled quantities 

41 = 7r(x/L - x ’ / L ) ,  

42 = r ( x / L + x ’ / L ) ,  

(T = (p’ + R ’)1”. 

and 

We obtain the formulae (cf I, equation (6 .12))  

~a 3Eiy) (r ,  r’, t = t’) 

(4 .4)  

In (4 .5)  and (4 .6)  we have defined the functions 

which can be expressed in closed form (see equations (6.2)-(6.4) in I). We note that 
E? depends only on the modulus of R, while in ELy)Ry and R, are involved. 
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Equations (4.5) and (4.6) may be interpreted as the a + 03 representation of the 
correlation functions (expansion around the two-dimensional radiation field, Eckhardt 
1978b). We have not reported the a + 0 representation because it is not suitable for 
quantitative discussion (see e.g. equation (6.40) in I with /L = 0). 

5. Longitudinal and lateral coherence 

In analogy to the work of Bourett (1960) we will discuss the special forms of spatial 
coherence which are designated as longitudinal and lateral correlations. Owing to the 
vector character of the fields the coherence properties can be described more easily if 
we restrict ourselves to these two special cases. For longitudinal and lateral correlations 
the spatial distance is respectively parallel and perpendicular to the direction of the 
autocorrelated field component. 

In the infinite-space limit all autocorrelated field components are equal, and 
therefore only one longitudinal and one lateral correlation have to be studied. In our 
case, however, we may study five different functions: (i) y',","'(R = O ; x , x ' ) ;  (ii) 
y:J(R;  x = x ' ) ;  (iii) yE'(Ry ,  R, = O ;  x =XI ) ;  (iv) -yl":' (R, =0,  R,; x = x ' ) ;  (v) 
y y y  (R, = R, = 0; x = X I ) .  In infinite space the longitudinal and lateral coherence 
functions depend only on the temperature-scaled distance of the considered space 
points. There is no explicit temperature dependence (Bourett 1960). 

In figure 6 we have plotted y?? for different values of a. x - x'  was chosen 
symmetrical to the plane x = L/2  (i.e. x + x '  = L). If we display YE,"=" against the 
temperature-scaled distance ( k ~ T / h c )  ( x  - x ' )  for a c0.5 the isotropic space limit is 
approached. On the other hand for a >> l y g '  is independent of x :  

lat 2 

For fixed x - - X I  the x dependence of YE' can be studied. We find that the coherence is 
slightly increased compared with the symmetric case if x (or x ' )  is close to the boundary. 

0' 0's 
I x - x ? / L  

Figmm 6. Spatial coherence function for the infinite slab resonator, component perpendi- 
cularJo the ptates, y? against the length-scakddistance (x - x ' ) / t  for a = 0.5,  1, 2.4, i.e. 
LT=1~44,0~72,0~36,0~18cmKandx+x'=L. 
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This is also valid for a <0.5, i.e. for very small a the influence of the boundaries is 
noticeable (see also figures 1 and 2 in I). 

In figure 7 yz": is displayed as a function of the temperature-scaled distance in the yz 
plane for x = x '  = L / 2 .  For a s 0.5 the infinite-isotropic-space limit is reached. For 
a + a3 the coherence function is given by (5.1) (isotropic two-dimensional radiation 
field). 

I I I I 0 1 
R 

Figure 7. Spatial coherence function for the infinite slab resonator, component perpendi- 
cular to the plates, yl': as a function of the thermodynamic reduced distance R = 

( k B T / h c ) [ ( y  - Y ' ) ~  + (z - z')~]' '* for a = 0.5, 2, CO and x = x '  = L / 2 .  

In figure 8 we have plotted a characteristic cut through figure 7 which reveals the x 
dependence of y'x":. Near the boundary there are deviations from the isotropic limit 
even for a S 0.5. With increasing a the x dependence decreases. The isotropic space 
limit in the LY s 0.5 regime is approached more closely as x and x '  move away from the 
boundaries. For y!,? the same property is shown in figures 9 and 10. In contrast to 
-ygg the coherence decreases with increasing a and fixed R, : 

1 + R t  
" ' + ( l + R  ) 

3/2  exp[-a[(l+ R * ) ' / ~ -  111. (5.2) 

For LY s 0.5 the lateral coherence functions of yyv approach the isotropic space limit. 
Studying the x dependence of 7:; * we find a behaviour similar to that for y;,?: the 
coherence increases with increasing distance to the boundary x = 0. The x dependence 
of y:,! * shows the same characteristic features as the x dependence of y:', 

6. Conclusions 

In this paper we have discussed the space dependence of the coherence of blackbody 
radiation between two infinitely extended, parallel metallic plates. In contrast with 
infinite isotropic space, closed classical trajectories are possible in this system and these 
lead to finite PoincarC recurrence times. 
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x / L  0 

Figure 8. Spatial coherence function for the infinite slab resonator, component perpendi- 
cular to the plates, yz”: against the position x/L between the plates for a = 0.5, 1,2,4,8 and 
R = 0.6. 

I 

0 

1573 

5 

Figure 9. Spatial coherence function for the infinite slab resonator, component parallel to 
the plates, $,?,? against R, = (kBT/hc) ly  - y‘l for a = 0.5,4, 16, 35 and x = x ’  = L/2. 

For a < 1 the x dependence shows additional peaks in the modulus of the degree of 
temporal coherence at 7 = l / c ( x  * x X ’ * 2 p L ) .  Classical trajectories which start from a 
point x between the plates return after p reflections to this point. For a >> 1 the 
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0 50 

En 

6:: * 

0 1c 

0 3; I I 1 I 

x / L  
5 

Figure 10. Spatial coherence function for the infinite slab resonator, component parallel to 
the plates, y:;‘ as a function of the position x / L  between the plates for a =0.5,2,4 and 
R,  = 0.6. 

temporal coherence properties are determined by the superposition of two damped 
modes (yy,)  and the superposition of a two-dimensianal radiation field with one discrete 
and damped mode (yx , ) .  With increasing time the damping4eads to the disappearance 
of the peaks in the modulus of y. The damping is due to the continuous part of the 
spectrum. 

The lateral and longitudinal degrees. of spatial coherence (7 = 0) approach the 
infinite-space limit for a ~ 0 . 5  (LT> 1.44) if x and XI  are lying symmetrically to the 
plane x = L/2 or if x = X I =  L/2. For large a, yxx is independent of x and X I  and 
describes the coherence properties of an isotropic two-dimensional radiation field, 
while yyy may be considered as the coherence function of a damped single mode with 
wavevector k‘ = (TIL, 0,O). 
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